Two alloalleles of Xenopus laevis hairy2 gene-evolution of duplicated gene function from a developmental perspective

Y. Murato • K. Nagatomo • M. Yamaguti • C. Hashimoto

Received: 8 November 2006 / Accepted: 24 July 2007 / Published online: 28 August 2007
(C) Springer-Verlag 2007

Abstract

Gene duplication is a fundamental source of a new gene in the process of evolution. A duplicated gene is able to accept many kinds of mutations that could lead to loss of function or novel phenotypic diversity. Alternatively, the duplicated genes complementarily lose part of their functions to play original roles as a set of genes, a process called subfunctionalization. Pseudotetraploid frog Xenopus laevis has four sets of genes, and it is generally thought that the alloalleles in X. laevis have mutually indistinguishable functions. In this paper, we report differences and similarities between Xhairy2a and Xhairy2b in the neural crest, floor plate, and prechordal plate. Knockdown studies showed that Xhairy2a seems not to function in the neural crest, although both of them are required in the floor plate and the prechordal plate. Temporal expression pattern analysis

[^0]revealed that Xhairy $2 a$ is a maternal factor having lower zygotic expression than Xhairy2b, while Xhairy2b is not loaded in the egg but has high zygotic expression. Spatial expression pattern analysis demonstrated that future floor plate expression is shared by both alloalleles, but Xhairy2b expression in the neural crest is much higher than Xhairy2a expression, consistent with the results of individual knockdown experiments. Therefore, our data suggest that subfunctionalization occurs in Xhairy2.

Keywords Gene duplication • Subfunctionalization • Xhairy2 \cdot Pseudotetraploid \cdot Xenopus laevis

Introduction

Gene duplication is an important evolutionary strategy by which organisms acquire phenotypic diversity (Ohno 1970). In this widely cited classic model, gene duplication creates a redundant locus that allows one of the duplicates to accumulate different kinds of mutations on the condition that the other, the original copy, still plays most of the ancestral roles. This mechanism is thought to produce two results. One is nonfunctionalization, in which the duplicate eventually loses its function because of accumulated degenerative mutations and is extinguished from the genome or becomes a pseudogene. The other is neofunctionalization, by which a hitherto nonexisting beneficial function is acquired. This promotes fixation of the duplicate in the genome.

However, neofunctionalization is generally thought to be an event of extremely rare occurrence and is contradictory to the fact that many duplicated genes exist in the extant genome (e.g., Prince and Pickett 2002). Genetic studies of the teleost zebrafish, whose genome is thought to have undergone whole-genome duplication three times, have
produced several lines of evidence providing another explanation for the existence of many duplicated genes in the extant genome, which is subfunctionalization supported by the duplication-degeneration-complementation (DDC) model (Force et al. 1999). Subfunctionalization is the accumulation of degenerative mutations eventually leading to complementary loss of part of subfunctions in the duplicate of the pair. Because the pair complements each other to maintain ancestral roles, this trajectory of gene duplication seems to be preserved in the genome. To illustrate, one study on zebrafish hoxbl genes shows the complementary expression and functions of hoxbla and hoxblb in rhombomeres, supporting the DDC model (McClintock et al. 2002).

Xenopus laevis, a popular model of vertebrate development, is a pseudotetraploid species of the Xenopus genus (Graf and Kobel 1991). Similar to zebrafish, X. laevis has four sets of genes, although there is no evidence supporting zebrafish tetrasomy. Therefore, the duplicated genes of zebrafish and X. laevis might mutually differ in the way their genomes are preserved, and the widely accepted DDC model might not always be applicable to X. laevis. However, unlike zebrafish, the differences between alloalleles of a gene in X. laevis have not been intensively investigated so far. We report herein differences and similarities between Xhairy $2 a$ (Davis et al. 2001) and Xhairy2b (Tsuji et al. 2003) in the neural crest, floor plate, and prechordal plate. Part of our results support the DDC model, suggesting that subfunctionalization might have occurred after ancestral Xhairy2 had been duplicated.

Materials and methods

Embryonic manipulations

X. laevis embryos were in vitro fertilized, dejellied, and cultured as described (Hawley et al. 1995) and staged according to Nieuwkoop and Faber (1967). For wholemount in situ hybridization (WISH), embryos were fixed in MEMFA at the indicated stages. For microinjection experiments, injected regions were checked by coinjecting fluorescein dextran amine (FLD, Molecular Probes).

Plasmids

Xhairy2a/pBS: Full-length Xhairy2a was PCR-amplified based on published sequence with the following primer sets: F (5'-CCCGAATTCTGAGGTGTAGGATCCAGCCT GACGCACAA) and R (5^{\prime}-CCCGCGGCCGCTTCAA TAAAACTCCTGCATGTTCGG). The fragment was cut with EcoR1 and Not1 and inserted into EcoR1-Not1digested pBSKS + . Xhairy $2 b / \mathrm{pBS}$ was described elsewhere (Murato et al. 2006). Xhairy2a/pCS2AT+ and Xhairy2b/
pCS2AT+ were constructed by amplifying the 5^{\prime} untranslated region and the coding sequence of Xhairy $2 a / \mathrm{pBS}$ and Xhairy $2 b / \mathrm{pBS}$, respectively, and inserted into pCS2AT+. Xhairy2a-5'UTR/pCS2AT+ (for Xhairy2a specific probe synthesis): Xhairy2a/pCS2AT+ was digested with Nco1, and the remaining vector backbone was self-ligated. Xhairy2b-5'UTR/pCS2AT+ (for Xhairy2b specific probe synthesis): Xhairy2b/pCS2AT + was digested with Pst 1 and Asc1, blunted with T4 deoxyribonucleic acid (DNA) polymerase, and self-ligated.

Morpholino antisense oligos

Xhairy2 morpholino antisense oligos (mo's) were obtained from Gene Tools. The sequences were as follows: control mo (co mo) 5'-GCATTTTCATTTGCTTGTAAAGTAA-3' and Xhairy $2 a$ mo (h2A mo) 5'-GCATGTTCAGTTGCTGG TACAGTCA-3'. Xhairy $2 b$ mo (h2B mo) was described previously (Yamaguti et al. 2005).

In situ hybridization
WISH was performed as described (Harland 1991) with minor modifications. The labeled probe of Xhairy2 (previously described as Xhairy2b) was synthesized as described previously (Yamaguti et al. 2005). The labeled probes of foxd3 (Sasai et al. 2001), shh (Ekker et al. 1995), and chd (Yamaguti et al. 2005) were synthesized as described previously. For the synthesis of Xhairy2a- or Xhairy $2 b$ specific probes, Xhairy2a-5'UTR/ pCS2AT+ and Xhairy2b$5^{\prime} U T R / p C S 2 A T+$ were linearized with HindIII and transcribed with T7 ribonucleic acid (RNA) polymerase (TOYOBO). To increase the sensitivity of the two specific probes, the concentrations of nucleoside triphosphates and digoxigenin (DIG)-labeled uridine triphosphate (UTP) were modified to increase signal intensity: 10 mM adenosine triphosphate, cytidine triphosphate, or guanosine triphosphate and 5 mM UTP or DIG-UTP. Samples stained with shh or chd were dehydrated, embedded in paraffin, cut into $10-\mu$ m-thick sections, and deparaffinized.

RNA dot blot and RT-PCR analysis

RNA dot blot was performed based on the protocols provided by Amersham Biosciences. Xhairy $2 a$ and Xhairy $2 b$ sense RNAs, synthesized with Xhairy2a/ pBS and Xhairy2b/ pBS, respectively, were spotted on Hybond-N+ (Amersham Biosciences) in a fourfold-decreasing manner (625, 156, $39,9.8 \mathrm{pg}$) and fixed with 0.05 N NaOH . DIG-labeled Xhairy $2 a$ - and Xhairy $2 b$-specific probes as well as the fluorescein-labeled Xhairy2 probe (coding sequence only, synthesized with Xhairy2b/pCS2AT+; Yamaguti et al. 2005) were hybridized at $68^{\circ} \mathrm{C}$. After thorough washing, the
membrane was incubated with Anti-Digoxigenin-POD (Roche, $1: 2,000$) and Anti-Fluorescein-AP (Roche, $1: 2,000)$. For signal detection of the specific probes, electrochemiluminiscence (ECL) Western Blotting Detection Reagents (Amersham Biosciences) were used. After ECL reaction, the membranes were stained with nitroblue tetrazolium (NBT)/bromo-chloro-indolyl phosphate (BCIP) to ensure equal loading of Xhairy $2 a$ and Xhairy $2 b$ sense RNAs.

Reverse transcription polymerase chain reaction (RTPCR) was performed according to the standard method with M-MLV RTase (Gibco). For PCR amplification, the annealing temperature was set at $66^{\circ} \mathrm{C}$, and the reaction was run for 25 cycles. The primer set for the detection of Xhairy $2 a$ and Xhairy $2 b$ expression was the following: F (5'-AGCGCTGAGTCCGTGTGGAGACCATG) and R (5'GCAGGGTCCCATAGAACGGAACCAA). To detect Xhairy2 expression, the following primers were used: F (5'-GATCGTAGCCATGAATTACC) and R (5'-GATAAC AGGTCCGGGGCTGG). For $H 4$ histone, the following primers were used: F (5^{\prime}-ATTTATGAGGAAACTCGTG GGGTCC) and R(5'-TTATCCGCCGAAGCCGTAGAGA GTG). Xhairy $2 a / p B S$ and Xhairy $2 b / p B S$ were also used as
templates for references in the electrophoresis. The fragment was electrophoresed with Tris-borate-ethylenediamine tetraacetic acid-buffered 8% acrylamide gel.

Results and discussion

Specific knockdown of Xhairy2 alloalleles Xhairy $2 a$ and Xhairy $2 b$ reveals differences between them

We analyzed the functions of the Xhairy2 gene in the early Xenopus embryos. In knockdown experiments, we tried to inhibit completely possible functions by knocking down both A and B alleles with a combination of two specific mo's (Fig. S1a). We designed three morpholinos for functional analyses of the Xhairy2 gene: co mo (five-basemismatched control morpholino for Xhairy2a), h2A mo (specific for Xhairy2a), and h2B mo (specific for Xhairy2b). The accuracy and efficiency of these morpholinos were carefully examined by using various Myc-tagged Xhairy $2 a$ and Xhairy $2 b$ constructs, and no unwanted crossreactions were observed (Fig. S1b and its legend).

Fig. 1 Functional analysis of Xhairy $2 a$ and Xhairy2b in the neural crest by means of specific morpholinos. a Brief summary of experimental scheme. Morpholino and fluorescein dextran amine (FLD) were unilaterally (right side) coinjected into one dorsal animal blastomere at the eight-cell stage. Injected regions were checked with FLD fluorescein at stage 13 (early neurula stage), and only correctly injected embryos as shown in a i were fixed, followed by WISH with foxd 3 . a i Dorsal view with anterior side down. b-f WISH results of foxd3 (anterior-dorsal view). The injected morpholino is indicated at the upper right corner of each panel (un-inj indicates uninjected control; h2A mo+ $h 2 B$ mo indicates coinjection of h2A mo and h2B mo). The probe is indicated at the lower right corner of each panel. Red arrowheads indicate repression of foxd 3 expression on the injected side. The dose of morpholinos was as follows: co mo, 3.4 ng ; h2A mo, 3.4 ng ; h2B mo, 3.5 ng

[^1]Specificity of the morpholinos was examined elsewhere with rescue experiments (Nagatomo and Hashimoto 2007).

We previously showed that Xhairy $2 b$ was strongly expressed in the neural crest (Tsuji et al. 2003). When we knocked down both alleles with a combination of h2A mo and h2B mo in the neural crest (Fig. 1a) and checked the effects on marker gene foxd3 expression (Fig. 1b; Sasai et al. 2001) by means of WISH, the functional inhibition was found to result in the strong repression of foxd 3 expression at the early neurula stage (in $69 \%, n=45$, Fig. 1f; see also Nagatomo and Hashimoto 2007). It is interesting to note that when we compared the single knockdown of either Xhairy $2 a$ or Xhairy $2 b$ to each other, the results were different. Although Xhairy2b single knockdown showed repressive effects on foxd3 expression (in $55 \%, n=40$, Fig. 1e), Xhairy $2 a$ single knockdown showed virtually no effects on foxd 3 expression (repression in $20 \%, n=39$; Fig. 1d). The control morpholino showed almost no effect, as expected (repression in $14 \%, n=37$, Fig. 1c). These results strongly suggest that Xhairy $2 a$ and Xhairy $2 b$ were different in some aspects in the neural crest.

A previous loss-of-function study of the floor plate expression of Xhairy2a (Lopez et al. 2005) showed that Xhairy2a positively regulated floor plate development. To further investigate the possible differences between Xhairy $2 a$ and Xhairy $2 b$, we next examined their functions in the floor plate where we reported that Xhairy $2 b$ was expressed from the mid-gastrula stage (Tsuji et al. 2003). For the analyses of the floor plate, we inhibited functions of either Xhairy2a or Xhairy $2 b$ or both, with specific morpholinos (Fig. 2a) and examined the expression of the marker gene shh (Fig. 2b; Ekker et al. 1995) by WISH. Samples were cleared for quantification of data. The results showed that single knockdown of either Xhairy $2 a$ (repression in $35 \%, n=20$, Fig. 2d) or Xhairy $2 b$ (repression in $60 \%, n=20$, Fig. 2e) caused remarkable reduction in $s h h$ expression, whereas the control morpholinos did not show recognizable changes (repression in $5 \%, n=20$, Fig. 2c). As expected, the double knockdown of Xhairy $2 a$ and Xhairy $2 b$ showed a stronger penetrance of the phenotype (shh repression in 85%, n=20, Fig. 2f; see also Fig. 2 g for comparison) than the single knockdown. Because shh is expressed in both the notochord and the overlying floor plate in early neurulae, we checked if the morphants lost the expression of shh in the floor plate by transverse sectioning. By doing so, we confirmed that the expression of shh was indeed repressed in the floor plate but not in the notochord (Figs. 2b'-f'). Taken together, we concluded that Xhairy2a and Xhairy $2 b$ seemed to behave in a similar way in the floor plate expression of shh.

We previously showed that Xhairy $2 b$ was expressed in the anterior part of the prechordal plate and that the inhibition of Xhairy $2 b$ function in this tissue resulted in anterior expan-
sion of chd expression (Yamaguti et al. 2005). Based on this finding, we tried to see if the single knockdown of Xhairy $2 a$ or the double knockdown of both Xhairy $2 a$ and Xhairy $2 b$ caused an anterior expansion of chd expression. Embryos that were correctly injected with morpholinos (Fig. 3a) were stained with chd and cleared for quantification, and the midsagittal sections were compared for confirmation. The results demonstrated that Xhairy $2 b$ morphants (expanded in 42%, $n=19$; Fig. 3e) and the double morphants (expanded in 50%, $n=14$; Fig. 3f) indeed showed anterior expansion of chd expression, compared with the uninjected (Fig. 3b) or control-morpholino-injected (expanded in 5\%, $n=20$; Fig. 3c) embryos. In addition, Xhairy $2 a$ morphants showed expansion of chd expression (expanded in $50 \%, n=20$; Fig. 3d) in a similar manner to that of Xhairy $2 b$ morphants. In this paper, the sectioned embryos shown in Fig. 3 look different with each other in terms of the morphology, possibly because of slight differences in developmental stages or sectioning conditions. However, we doublechecked the results by observing the cleared embryos plenty enough to confirm that chd expression indeed expanded anteriorly in Xhairy2 morphants. Therefore, these results suggest that both Xhairy $2 a$ and Xhairy $2 b$ were needed to regulate chd expression in the anterior part of the prechordal plate.

Differences between Xhairy $2 a$ and Xhairy $2 b$: expression level and spatio-temporal expression pattern

How are Xhairy2a and Xhairy $2 b$ different from each other in the neural crest, and why do they seem to be similar in the floor plate and the prechordal plate? The amino acid sequences of Xhairy2a and Xhairy2b show 92.8% identity with each other (Tsuji et al. 2003). In particular, the sequences of critical domains that serve as a transcriptional repressor, such as the DNA-binding domain and the corepressor-binding motif, are completely identical. For confirmation, Xhairy2a and Xhairy2b, as transcription factors, were compared by means of the luciferase reporter assay. The result clearly showed that Xhairy2a and Xhairy2b were virtually identical in terms of transcriptional regulation via the target sequences (Fig. S2), suggesting that the differences between Xhairy2a and Xhairy $2 b$ seen in the neural crest might be attributed to their expression level and/or expression pattern.

We therefore examined the temporal expression patterns and expression levels of Xhairy $2 a$ and Xhairy $2 b$ to explain the differences and similarities observed in the knockdown experiments. We previously showed the temporal expression pattern of Xhairy $2 b$ by Northern blot analysis (Tsuji et al. 2003). However, we found that the probe crosshybridized with Xhairy2a (Fig. S3). Accordingly, we adopted RT-PCR analysis to distinguish the individual

Fig. 2 Functional analysis of Xhairy $2 a$ and Xhairy $2 b$ in the floor plate by means of specific morpholinos. a Brief summary of experimental scheme. Morpholino and FLD were bilaterally coinjected into the dorsal marginal zone at the eight-cell stage. Injected regions were checked with FLD fluorescein at stage 13 (early neurula stage), and only correctly injected embryos as shown in a i were fixed, followed by WISH with shh. a i Dorsal view with anterior side up. b-f WISH results of shh (dorsal view with anterior side up). The injected morpholino is indicated at the upper right corner of each panel. The probe is indicated at the lower right corner of each panel. $\mathbf{b}^{\prime}-\mathbf{f}^{\prime}$ Transverse sections of corresponding samples. In controls \mathbf{b}^{\prime} and \mathbf{c}^{\prime}, both the floor plate (outside expression) and the notochord (inside expression) were shh positive. However, in morphants $\mathbf{d}^{\prime}, \mathbf{e}^{\prime}$, and \mathbf{f}^{\prime}, the outside floor plate expression was repressed, as indicated by red arrowheads. g a summary graph showing repression of floor plate shh expression in Xhairy 2 morphants. Note that the double knockdown shows higher percentage of $s h h$ repression in the floor plate than the single knockdown. The dose of morpholinos was as follows: co $\mathrm{mo}, 6.8 \mathrm{ng} ; \mathrm{h} 2 \mathrm{~A} \mathrm{mo}, 6.8 \mathrm{ng}$; h2B mo, 6.9 ng

Fig. 3 Functional analysis of Xhairy $2 a$ and Xhairy $2 b$ in the prechordal plate by means of specific morpholinos. a Brief summary of experimental scheme. Morpholino and FLD were bilaterally coinjected into the deep dorsal marginal zone at the eight-cell stage. Injected regions were checked with FLD fluorescein at stage 13 (early neurula stage), and only correctly injected embryos as shown in a i were fixed, followed by WISH with chd. a i Dorsal view with anterior side up. b-f Midsagittal sections of samples stained with chd (dorsal side up with anterior side to the left). Because it was virtually impossible to detect the anterior expansion of chd expression by
whole-mount view, samples were sagittally sectioned after WISH to facilitate analyses. The injected morpholino is indicated at the lower left corner of each panel. The probe is indicated at the lower right corner of each panel. Red arrowheads indicate the anterior limit of chd expression, while blue arrowheads indicate the anterior edge of archenteron. The distance between them in morphants \mathbf{d}, \mathbf{e}, and \mathbf{f} was shorter than that of controls \mathbf{b} and \mathbf{c}, indicating anteriorward expansion of chd expression in morphants. The dose of morpholinos was as follows: co mo, 6.8 ng ; h2A mo, 6.8 ng ; h2B mo, 6.9 ng
level throughout the stages investigated (Fig. 4b). The difference in the zygotic expression level between Xhairy2a and Xhairy $2 b$ is consistent with the results of knockdown experiments in the neural crest (Fig. 1) in which the inhibition of Xhairy $2 b$ but not Xhairy $2 a$ affected marker gene expression.

However, the RT-PCR results do not explain the similarity between Xhairy2a and Xhairy $2 b$ in regulating shh and chd expression in the floor plate (Fig. 2) and the prechordal plate (Fig. 3), respectively. This indicates the need to strictly examine the spatial expression patterns of Xhairy $2 a$ and Xhairy2b. To address this issue, we designed two specific probes for part of the 5^{\prime} untranslated region where the sequence similarity between Xhairy $2 a$ and Xhairy $2 b$
a

b

Fig. 4 Temporal expression patterns of Xhairy $2 a$ and Xhairy $2 b$ from egg to tail bud stage. a Summary of RT-PCR strategy. Use of the same primer set (shown as red arrows) resulted in different lengths of fragments (shown as orange bars) because of the presence or absence of two gaps (Xhairy2a: 100 bp , Xhairy2b: 82 bp). To view the temporal expression pattern of the Xhairy2 gene as a whole, another primer set (shown as dark blue arrows) amplifying a 250-bp region (shown as
was 61% (Fig. S3a). The similarity in sensitivity and specificity of these probes was carefully verified by both in vitro and in vivo experiments (see Fig. S3). As mentioned above, we found that the previously used full-length
dark blue bars) with 100% identity between the alleles without any gaps was used. This enabled us to directly compare the quantitative difference between Xhairy2a and Xhairy $2 b$ expression at each stage. b RT-PCR analysis showed that Xhairy $2 a$ was maternally loaded and was expressed zygotically at quite low levels, while Xhairy $2 b$ was a bona fide zygotic factor. H 4 served as loading control. Amplification with plasmids containing either Xhairy $2 a$ or Xhairy $2 b$ served as reference

Xhairy2b probe cross-hybridized with Xhairy2a (Fig. S3b and d). Therefore, we redefined the two specific probes as Xhairy $2 a$ and Xhairy $2 b$ probes and the full-length Xhairy $2 b$ probe as the Xhairy 2 probe.

Fig. 5 Spatial expression patterns of Xhairy2 genes at the mid-neurula stage. a-d Stage-15 embryos from the dorsal view with the anterior side up. Note that Xhairy $2 b$ is expressed at high levels in the neural crest region, while the floor plate expression of Xhairy $2 a$ and Xhairy $2 b$ appears to be at a similar level. $\mathbf{a}^{\prime}-\mathbf{d}^{\prime}$ The same samples shown in $\mathbf{a}-\mathbf{d}$ viewed from the anterior side. The probe is indicated at the lower right corner of each panel (Xhairy2a/b indicates simultaneous staining with Xhairy $2 a$ and Xhairy2b)

Using the specific probes, we investigated the spatial expression patterns of Xhairy $2 a$ and Xhairy $2 b$ at the late gastrula stage and early neurula stage. In late gastrulae, we could not detect any signals in both the future floor plate and the anterior prechordal plate (data not shown). In neurulae, the differences in expression between Xhairy2a and Xhairy $2 b$ were obvious (Figs. 5a-d, $\mathrm{a}^{\prime}-\mathrm{d}^{\prime}$). Ectodermal Xhairy2 expression in neurulae was dominant in the presumptive neural crest, the anterior neural border, and the future floor plate (Figs. 5a and a'). Clearly, Xhairy $2 b$ was solely responsible for the expression in the neural crest (Figs. 5c and c^{\prime}), while Xhairy $2 a$ and Xhairy $2 b$ were equally expressed in the floor plate region and the anterior neural border (Figs. 5b and b'). The remarkable difference in the expression level between Xhairy $2 a$ and Xhairy $2 b$ in the neural crest (Figs. 5b and c) is again in good agreement with the results of loss-of-function experiments (Fig. 1).

The fact that both Xhairy $2 a$ and Xhairy $2 b$ are expressed in the floor plate explained our findings that both Xhairy $2 a$ and Xhairy $2 b$ are required in the floor plate when examined for shh expression (Fig. 2). Because the overall expression level of Xhairy $2 a$ is lower than that of Xhairy $2 b$ at the early neurula stage, the individual WISH as well as the knockdown results might suggest that the floor plate shh expression requires Xhairy2 proteins in a dose-dependent manner. In terms of expression in the anterior prechordal plate, again, we could not see any signals when stained with short specific probes (data not shown). To underpin the expression of both Xhairy $2 a$ and Xhairy $2 b$ in the anterior prechordal plate as suggested in the knockdown experiments (Fig. 3), technical improvement of signal amplification is required in future studies. As an extra finding, Xhairy2 expression in the anterior neural border (Fig. 5a') was subdivided into two domains, each of which was individually marked by Xhairy $2 a$ (inside expression: Fig. 5b') and Xhairy $2 b$ (surrounding expression: Fig. 5c'; see also Fig. 5d' where the combination of Xhairy $2 a$ and Xhairy $2 b$ reconstituted the original Xhairy2 expression shown in Fig. 5a'). Functions of Xhairy2 in this region are currently unknown and are under investigation.

Significance of extra copies of a gene in development

Recently, the expression and functions of the Xfoxil gene were investigated, and two copies of this gene were expressed in a mutually indistinguishable manner so that specific knockdown with morpholinos produced similar results (Matsuo-Takasaki et al. 2005). Although not extensively investigated, it is predicted that the two allelic versions of a gene in the pseudotetraploid species X. laevis would function in a similar manner. Our results, however, indicate that this is not the case with the Xhairy2 gene. The Xhairy2ballele might compensate for the low expression of
the Xhairy2a allele after MBT in certain tissues, for instance, in the neural crest, as shown in this study. At the same time, the absence of Xhairy $2 b$ transcripts in the eggs might be compensated by loading Xhairy $2 a$. Therefore, our study could be a clear example of subfunctionalization (e.g., Prince and Pickett 2002; Lynch and Katju 2004) predicted from the DDC model (Force et al. 1999). From this perspective, our finding that both Xhairy $2 a$ and Xhairy $2 b$ are required for the floor plate expression of $s h h$ is interesting because it implies that neither degeneration nor complementation occurred in shh regulation. This could be a good subject of studies on gene dosage in pseudotetraploid X. laevis.

In support of our findings, a couple of studies revealed differences in temporal expression pattern between two allelic versions of a gene in X. laevis. Of the two copies of the $X M y o D$ gene, $X M y o D a$ is maternally loaded and zygotically expressed from MBT onward, while $X M y o D b$ appears to be only maternally loaded (e.g., Harvey 1990). In addition, a recent study on $v g l$ whose messenger RNA is maternally localized and critical to mesoderm induction revealed that the knockdown of one allele had no effect at all, although inhibition of the other allele severely disrupted mesoderm induction, suggesting that only one allele of $v g 1$ is maternally loaded (Birsoy et al. 2006).

Conclusion

This study provides evidence that Xhairy $2 a$ and Xhairy $2 b$ are different in terms of expression level and expression pattern. These differences are in good agreement with the results of individual knockdown of either Xhairy $2 a$ or Xhairy $2 b$ in the neural crest and the floor plate. This study therefore supports the DDC model in pseudotetraploid X. laevis. Together with hitherto unknown functions of Xhairy $2 a$ and Xhairy2b, for instance, how Xhairy2a functions as a maternal factor, the comparison of Xhairy2 functions with those of orthologues in other organisms and the elucidation of their differences in detail will provide further insights into the evolutional and developmental significance of duplicated genes. From this perspective, the differences between Xhairy2 alloalleles are interesting in that they could relate the process of evolution to the mechanisms of development.

Acknowledgment We thank Dr. S. Nishimatsu (Kawasaki Medical School) for technical advice on whole-mount in situ hybridization.

References

Birsoy B, Kofron M, Schaible K, Wylie C, Heasman J (2006) Vg 1 is an essential signaling molecule in Xenopus development. Development 133:15-20

Davis RL, Turner DL, Evans LM, Kirschner MW (2001) Molecular targets of vertebrate segmentation: two mechanisms control segmental expression of Xenopus hairy 2 during somite formation. Dev Cell 1:553-565
Ekker SC, McGrew LL, Lai CJ, Lee JJ, von Kessler DP, Moon RT, Beachy PA (1995) Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121:2337-2347
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545
Graf JD, Kobel HR (1991) Genetics of Xenopus laevis. Methods Cell Biol 36:19-34
Harland RM (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685-695
Harvey RP (1990) The Xenopus MyoD gene: an unlocalised maternal mRNA predates lineage-restricted expression in the early embryo. Development 108:669-680
Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9:2923-2935
Lopez SL, Rosato-Siri MV, Franco PG, Paganelli AR, Carrasco AE (2005) The Notch-target gene hairy2a impedes the involution of notochordal cells by promoting floor plate fates in Xenopus embryos. Development 132:1035-1046
Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20:544-549

Matsuo-Takasaki M, Matsumura M, Sasai Y (2005) An essential role of Xenopus Foxila for ventral specification of the cephalic ectoderm during gastrulation. Development 132:3885-3894
McClintock JM, Kheirbek MA, Prince VE (2002) Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339-2354
Murato Y, Yamaguti M, Katamura M, Cho KW, Hashimoto C (2006) Two modes of action by which Xenopus hairy2b establishes tissue demarcation in the Spemann-Mangold organizer. Int J Dev Biol 50:463-471
Nagatomo K, Hashimoto C (2007) Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state. Dev Dyn 236:1475-1483
Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North-Holland, Amsterdam
Ohno S (1970) Evolution by gene duplication. Springer, Berlin
Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827-837
Sasai N, Mizuseki K, Sasai Y (2001) Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128:2525-2536
Tsuji S, Cho KW, Hashimoto C (2003) Expression pattern of a basic helix-loop-helix transcription factor Xhairy2b during Xenopus laevis development. Dev Genes Evol 213:407-411
Yamaguti M, Cho KW, Hashimoto C (2005) Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer. Dev Dyn 234:102-113

[^0]: Communicated By T. Hollemann
 Electronic supplementary material The online version of this article (doi:10.1007/s00427-007-0176-x) contains supplementary material, which is available to authorized users.
 Y. Murato \cdot K. Nagatomo \cdot M. Yamaguti \cdot C. Hashimoto

 Department of Biology, Graduate School of Science, Osaka University,
 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
 C. Hashimoto (\boxtimes)

 JT Biohistory Research Hall, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
 e-mail: hashimoto@brh.co.jp
 Present address:
 M. Yamaguti Brain Center, Kita-ku, Osaka, Osaka 530-0043, Japan

[^1]: -

